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Abstract. This paper presents a relatively rare case of an optimization problem in data
analysis to admit a globally optimal solution by a recursive algorithm. We are concerned
with finding a most specific generalization of a fuzzy set of topics assigned to leaves of domain
taxonomy represented by a rooted tree. The idea is to “lift” the set to its “head subject” in
the higher ranks of the taxonomy tree. The head subject is supposed to “tightly” cover the
query set, possibly bringing in some errors, either “gaps” or “offshoots” or both. Our method
globally minimizes a penalty function combining the numbers of head subjects and gaps and
offshoots, differently weighted. We apply this to a collection of 17645 research papers on Data
Science published in 17 Springer journals for the past 20 years. We extract a taxonomy of
Data Science (TDS) from the international Association for Computing Machinery Computing
Classification System 2012. We find fuzzy clusters of leaf topics over the text collection,
optimally lift them to head subjects in TDS, and comment on the tendencies of current
research following from the lifting results.

Keywords: Hierarchical taxonomy · Parsimony · Generalization · Additive fuzzy cluster ·
Spectral clustering · Annotated suffix tree

1 Introduction

The issue of automation of structurization and interpretation of digital text collections is of ever-
growing importance because of both practical needs and theoretical necessity. This paper concerns
an aspect of this, modeling generalization as a unique feature of human cognitive abilities. The
existing approaches to computational analysis of structure of text collections usually involve no
generalization as a specific aim. The most popular tools for structuring text collections are cluster
analysis and topic modelling. Both involve items of the same level of granularity as individual words
or short phrases in the texts, thus no generalization as an explicitly stated goal.

Nevertheless, the hierarchical nature of the universe of meanings is reflected in the flow of
publications on text analysis. We can distinguish between at least three directions at which the
matter of generalization is addressed.

First of all, there are activities related to developing taxonomies, especially those involving
hyponymic/ hypernymic relations (see, for example, [14, 17], and references therein). A recent paper
[15] is devoted to supplementing a taxonomy with newly emerging research topics.

Another direction is part of conventional activities in text summarization. Usually, summaries
are created using a rather mechanistic approach of sentence extraction. There is, however, also an
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approach for building summaries as abstractions of texts by combining some templates such as
subject-verb-object (SVO) triplets (see, for example, [8]).

One more direction is what can be referred to as “operational” generalization: the authors use
generalized case descriptions involving taxonomic relations between generalized states and their
parts to achieve a tangible goal such as improving characteristics of text retrieval (see, for example,
[11] and [16].)

This paper falls in neither of these directions, as we do not try to change any taxonomy. We
rather use a taxonomy for straightforwardly implementing the idea of generalization. According to
the Merriam-Webster dictionary, the term “generalization” refers to deriving a general conception
from particulars. We assume that a most straightforward medium for such a derivation, a domain
taxonomy, is given as a rooted tree whose nodes are labeled by topics of the domain. The situation
of our concern is a case at which we are to generalize a fuzzy set of taxonomy leaves representing the
essence of some empirically observed phenomenon. The most popular Computer Science taxonomy is
manually developed by the world-wide Association for Computing Machinery, a most representative
body in the domain; the latest release of the taxonomy has been published in 2012 as the ACM
Computing Classification System (ACM-CCS) [1]. We take its part related to Data Science, as
presented in a slightly modified form by adding a few leaves in [4].

The rest of the paper is organized accordingly. Section 2 presents a mathematical formalization
of the generalization problem as of parsimoniously lifting of a given fuzzy leaf set to higher ranks
of the taxonomy and provides a recursive algorithm leading to a globally optimal solution to the
problem. Section 3 describes an application of this approach to deriving tendencies in development
of the data science, that are discerned from a set of about 18,000 research papers published by the
Springer Publishers in 17 journals related to Data Science for the past 20 years. Its subsections
describe our approach to finding and generalizing fuzzy clusters of research topics. In the end, we
point to tendencies in the development of the corresponding parts of Data Science, as drawn from
the lifting results.

2 Parsimoniously lifting a fuzzy thematic subset in taxonomy: model
and method

Mathematically, a taxonomy is a rooted tree whose nodes are annotated by taxonomy topics. We
consider the following problem. Given a fuzzy set S of taxonomy leaves, find a node t(S) of higher
rank in the taxonomy, that covers the set S in a most specific way. Such a “lifting” problem is a
mathematical explication of the human facility for generalization, that is, “the process of forming
a conceptual form” of a phenomenon represented, in this case, by a fuzzy leaf subset.

The problem is not as simple as it may seem to be. Consider, for the sake of simplicity, a hard
set S shown with five black leaf boxes on a fragment of a tree in Figure 1. Figure 2 illustrates the
situation at which the set of black boxes is lifted to the root, which is shown by blackening the
root box, and its offspring, too. If we accept that set S may be generalized by the root, this would
lead to a number, four, white boxes to be covered by the root and, thus, in this way, falling in the
same concept as S even as they do not belong in S. Such a situation will be referred to as a gap.
Lifting with gaps should be penalized. Altogether, the number of conceptual elements introduced
to generalize S here is 1 head subject, that is, the root to which we have assigned S, and the 4
gaps occurred just because of the topology of the tree, which imposes this penalty. Another lifting
decision is illustrated in Figure 3: here the set is lifted just to the root of the left branch of the tree.
We can see that the number of gaps has drastically decreased, to just 1. However, another oddity
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emerged: a black box on the right, belonging to S but not covered by the root of the left branch
at which the set S is mapped. This type of error will be referred to as an offshoot. At this lifting,
three new items emerge: one head subject, one offshoot, and one gap. This is less than the number
of items emerged at lifting the set to the root (one head subject and four gaps, that is, five), which
makes it more preferable. Of course, this conclusion holds only if the relative weight of an offshoot
is less than the total relative weight of three gaps.

Fig. 1. A crisp query set, shown by black boxes, to be
conceptualized in the taxonomy.

Fig. 2. Generalization of the query set from Figure 1
by mapping it to the root, with the price of four gaps
emerged at the lift.

Fig. 3. Generalization of the query set from Figure 1
by mapping it to the root of the left branch, with the
price of one gap and one offshoot emerged at this lift.

We are interested to see whether a fuzzy set
S can be generalized by a node t from higher
ranks of the taxonomy, so that S can be thought
of as falling within the subtree rooted at the
node t. The goal of finding an interpretable
pigeon-hole for S within the taxonomy can be
formalized according to the Maximum Parsi-
mony (MP) principle: find one or more “head
subjects” t to cover S with the minimum num-
ber of the elements introduced at the general-
ization: head subjects and gaps and offshoots.

Consider a rooted tree T representing a hi-
erarchical taxonomy so that its nodes are anno-
tated with key phrases signifying various con-
cepts. We denote the set of all its leaves by I.
The relationship between nodes in the hierarchy
is conventionally expressed using genealogical
terms: each node t ∈ T is said to be the parent
of the nodes immediately descending from t in
T , its children. We use χ(t) to denote the set of
children of t. Each interior node t ∈ T − I is
assumed to correspond to a concept that gen-
eralizes the topics corresponding to the leaves
I(t) descending from t, viz. the leaves of the
subtree T (t) rooted at t, which is convention-
ally referred to as the leaf cluster of t.

A fuzzy set on I is a mapping u of I to
the non-negative real numbers that assigns a
membership value, or support, u(i) ≥ 0 to each
i ∈ I. We refer to the set Su ⊂ I, where
Su = {i ∈ I : u(i) > 0}, as the base of u. In general, no other assumptions are made about the
function u, other than, for convenience, commonly limiting it to not exceed unity. Conventional, or
crisp, sets correspond to binary membership functions u such that u(i) = 1 if i ∈ Su and u(i) = 0
otherwise.

Given a fuzzy set u defined on the set of leaves I of the tree T , one may consider u to be a
(possibly noisy) projection of a higher rank concept, u’s “head subject”, onto the corresponding
leaf cluster. Under this assumption, there should exist a head subject node h among the interior
nodes of T such that its leaf cluster I(h) more or less coincides (up to small errors) with Su. This
head subject is the generalization of u to be found. The two types of possible errors associated with
the head subject, if it does not cover the base of u precisely, are false positives and false negatives,



4 D. Frolov et al.

referred to in this paper, as gaps and offshoots, respectively. They are illustrated in Figures 2 and
3. Given a head subject node h, a gap is a node t covered by h but not belonging to the base of
u, so that u(t) = 0. In contrast, an offshoot is a node t such that u(t) > 0 but not covered by h.
Altogether, the total number of head subjects, gaps, and offshoots has to be as small as possible.
To this end, we introduce a penalty for each of these elements. Assuming for the sake of simplicity,
that the black box leaves on Figure 1 have membership function values equal to unity, one can
easily see that the total penalty at the head subject raised to the root (Figure 2) is equal to 1 + 4λ
where 1 is the penalty for a head subject and λ, the penalty for a gap, since the lift on Figure 2
involves one head subject, the root, and four gaps, the blank box leaves. Similarly, the penalty for
the lift on Figure 3 to the root of the left-side subtree is equal to 1 + γ + λ where γ is the penalty
for an offshoot, as there is one copy of each, head subject, gap, and offshoot, in Figure 3. Therefore,
depending on the relationship between γ and λ either lift on Figure 2 or lift on Figure 3 is to be
chosen. That will be the former, if 3λ < γ, or the latter, if otherwise.

A node t ∈ T is referred to as u-irrelevant if its leaf-cluster I(t) is disjoint from the base Su.
Obviously, if a node is u-irrelevant, all of its descendants are also u-irrelevant. Consider a candidate
node h in T and its meaning relative to fuzzy set u. An h-gap is a node g of T (h), other than h, at
which a loss of the meaning has occurred, that is, g is a maximal u-irrelevant node in the sense that
its parent is not u-irrelevant. Conversely, establishing a node h as a head subject can be considered
as a gain of the meaning of u at the node. The set of all h-gaps will be denoted by G(h).

A gap is less significant if its parent’s membership value is smaller. Therefore, a measure v(g)
of “gap importance” should also be defined, to be reflected in the penalty function. We suggest
defining the gap importance as v(g) = u(par(g)), where par(g) is the parent of g. An alternative
definition would be to scale these values by dividing them by the number of children of par(g).
However, we note that the algorithm ParGenFS below works for any definition of gap importance.
Also, we define a summary gap importance: V (t) =

∑
g∈G(t) v(g).

An h-offshoot is a leaf i ∈ Su which is not covered by h, i.e., i /∈ I(h). The set of all h-offshoots
is Su−I(h). Given a fuzzy topic set u over I, a set of nodes H will be referred to as a u-cover if: (a)
H covers Su, that is, Su ⊆

⋃
h∈H I(h), and (b) the nodes in H are unrelated, i.e. I(h) ∩ I(h′) = ∅

for all h, h′ ∈ H such that h 6= h′. The interior nodes of H will be referred to as head subjects and
the leaf nodes as offshoots, so the set of offshoots in H is H ∩ I. The set of gaps in H is the union
of G(h) over all head subjects h ∈ H − I.

We define the penalty function p(H) for a u-cover H as:

p(H) =
∑

h∈H−I

u(h) +
∑

h∈H−I

∑
g∈G(h)

λv(g) +
∑

h∈H∩I

γu(h). (1)

The problem we address is to find a u-cover H that globally minimizes the penalty p(H). Such a
u-cover is the parsimonious generalization of the set u.

Before applying an algorithm to minimize the total penalty, one needs to execute a prelim-
inary transformation of the tree by pruning it from all the non-maximal u-irrelevant nodes, i.e.
descendants of gaps. Simultaneously, the sets of gaps G(t) and the internal summary gap impor-
tance V (t) =

∑
g∈G(t) v(g) in Eq. (1) can be computed for each interior node t. We note that

the elements of Su are in the leaf set of the pruned tree, and the other leaves of the pruned tree
are precisely the gaps. After this, our lifting algorithm ParGenFS applies. For each node t, the
algorithm ParGenFS computes two sets, H(t) and L(t), containing those nodes in T (t) at which
respectively gains and losses of head subjects occur (including offshoots). The associated penalty
p(t) is computed too.
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An assumption of the algorithm is that no gain can happen after a loss. Therefore, H(t) and L(t)
are defined assuming that the head subject has not been gained (nor therefore lost) at any of t’s an-
cestors. The algorithm ParGenFS recursively computes H(t), L(t) and p(t) from the corresponding
values for the child nodes in χ(t).

Specifically, for each leaf node that is not in Su, we set both L(·) and H(·) to be empty and the
penalty to be zero. For each leaf node that is in Su, L(·) is set to be empty, whereas H(·), to contain
just the leaf node, and the penalty is defined as its membership value multiplied by the offshoot
penalty weight γ. To compute L(t) and H(t) for any interior node t, we analyze two possible cases:
(a) when the head subject has been gained at t and (b) when the head subject has not been gained
at t. In case (a), the sets H(·) and L(·) at its children are not needed. In this case, H(t), L(t) and
p(t) are defined by:

H(t) = {t}, L(t) = G(t), p(t) = u(t) + λV (t). (2)

In case (b), the sets H(t) and L(t) are just the unions of those of its children, and p(t) is the sum
of their penalties:

H(t) =
⋃

w∈χ(t)

H(w), L(t) =
⋃

w∈χ(t)

L(w), p(t) =
∑

w∈χ(t)

p(w). (3)

To obtain a parsimonious lift, whichever case gives the smaller value of p(t) is chosen.
When both cases give the same values for p(t), we may choose arbitrarily – in the formulation

of the algorithm below, we have chosen (a). The output of the algorithm consists of the sets defined
at the root, namely, H – the set of head subjects and offshoots, L – the set of gaps, and p – the
associated penalty.

ParGenFS Algorithm

– INPUT: u, T
– OUTPUT: H = H(root), L = L(root), p = p(root)
I Base Case

for each leaf i ∈ I
if u(i) > 0
H(i) = {i}
L(i) = �
p(i) = γu(i)

else
H(i) = �
L(i) = �
p(i) = 0

II Recursion
if u(t) + λV (t) ≤

∑
w∈χ(t) p(w)

H(t) = {t}
L(t) = G(t)
p(t) = u(t) + λV (t)

else
H(t) =

⋃
w∈χ(t)H(w)

L(t) =
⋃
w∈χ(t) L(w)

p(t) =
∑
w∈χ(t) p(w)
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The algorithm ParGenFS leads to an optimal lifting indeed:

Theorem 1. Any u-cover H found by the algorithm ParGenFS is a (global) minimizer of the
penalty p.

Proof. We prove this result by induction over the number of nodes n in the tree. If n = 1, there is
only one node i and, in the Base Case of ParGenFS, the definition of the sets H(i) and L(i) is such
that the only possible non-empty set is H(i) = {i}, when i ∈ Su. The penalty in this case is γu(i),
which is clearly the correct, and minimum, penalty. When i /∈ Su, the penalty is obviously zero.

Let us now assume that the statement is true for all rooted trees with fewer than n nodes.
Consider a rooted tree T (t) with n nodes, where n > 1. Each child w of the root t is itself the root
of a subtree T (w) with fewer than n nodes.

If the head subject is not gained at t, then the optimal H- and L-sets at t are clearly the unions
of the corresponding sets for the subtrees T (w); this follows from the additive structure of the
penalty function in (1). Clearly, the minimum penalty for the subtree T (t) must be the smaller of
the penalty values p(t) = u(t)+λV (t) and p(t) =

∑
w∈χ(t) p(w), as it is in the algorithm. The result

now follows by induction on n.

3 Structuring and generalizing a collection of research papers

To apply the ParGenFS algorithm, we go through the following steps:

– preparing a scholarly text collection;
– preparing a taxonomy of the domain under consideration;
– developing a matrix of relevance values between taxonomy leaf topics and research publications

from the collection;
– finding fuzzy clusters according to the structure of relevance values;
– lifting the clusters over the taxonomy to conceptualize them via generalization;
– making conclusions from the generalizations.

Let us describe them in turn.

3.1 Scholarly text collection

We downloaded a collection of 17685 research papers together with their abstracts published in 17
journals related to Data Science for 20 years from 1998-2017. We take the abstracts to these papers
as a representative collection.

3.2 DST Taxonomy

Taxonomy building is a form of knowledge engineering which is getting more and more popular.
Most known are taxonomies within the bioinformatics Genome Ontology project (GO) [5], health
and medicine SNOMED CT project [7] and the like. Mathematically, a taxonomy is a rooted tree,
a hierarchy, whose all nodes are labeled by main concepts of the domain the taxonomy relates to.
The hierarchy corresponds to a relation of inclusion: the fact that node A is the parent of B means
that B is part, or a special case, of A.

The subdomain of our choice is Data Science, comprising such areas as machine learning, data
mining, data analysis, etc. We take that part of the ACM-CCS 2012 taxonomy, which is related
to Data Science, and add a few leaves related to more recent Data Science developments. The
taxonomy under consideration is presented, for example, in [4].
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3.3 Scoring the relevance between texts and key phrases

Most popular and well established approaches to scoring keyphrase-to-document relevance include
the so-called vector-space approach [13] and probabilistic text model approach [2]. These, however,
rely on individual words and text pre-processing. We utilize a method, first developed by R. Pam-
papathi et al [12] and further advanced in [3], the AST method for evaluating keyphrase-to-text
relevance score using purely string frequency information. An advantage of the method is that it
requires no manual work, but works rather reliably, as claimed by these authors.

3.4 Deriving fuzzy clusters of taxonomy topics

Clusters of topics should reflect co-occurrence of topics: the greater the number of texts to which
both t and t′ topics are relevant, the greater the interrelation between t and t′, the greater the chance
for topics t and t′ to fall in the same cluster. We have tried several popular clustering algorithms at
our data. Unfortunately, no satisfactory results have been found. Therefore, we present here results
obtained with the FADDIS algorithm developed in [10] specifically for finding thematic clusters.
This algorithm implements assumptions that are relevant to the task:

LN Laplacian Normalization: Similarity data transformation, modeling – to an extent – heat dis-
tribution and, in this way, making the cluster structure sharper.

AA Additivity: Thematic clusters behind the texts are additive, so that similarity values are sums
of contributions by different hidden themes.

AN Non-Completeness: Clusters do not necessarily cover all the key phrases available, as the text
collection under consideration may be irrelevant to some of them.

Co-relevance topic-to-topic similarity score Given a keyphrase-to-document matrix R of
relevance scores is converted to a keyphrase-to-keyphrase similarity matrix A for scoring the “co-
relevance” of keyphrases according to the text collection structure. The similarity score att′ between
topics t and t′ can be computed as the inner product of vectors of scores rt = (rtv) and rt′ = (rt′v)
where v = 1, 2, . . . , V = 17685. The inner product is moderated by a natural weighting factor
assigned to texts in the collection. The weight of text v is defined as the ratio of the number of
topics nv relevant to it and nmax, the maximum nv over all v = 1,2,...,V. A topic is considered
relevant to v if its relevance score is greater than 0.2 (a threshold found experimentally, see [3]).

FADDIS thematic clusters After computing the 317 × 317 topic-to-topic co-relevance matrix,
converting in to a topic-to-topic Lapin transformed similarity matrix, and applying FADDIS clus-
tering, we sequentially obtained 6 clusters, of which three clusters are obviously homogeneous.
They relate to ’Learning’, ’Retrieval’, and ’Clustering’. These clusters, L, R, and C, respectively,
are presented in Table 1.

3.5 Results of lifting clusters L, R, and C within DST

The clusters above are lifted in the DST taxonomy using ParGenFS algorithm with the gap penalty
λ = 0.1 and off-shoot penalty γ = 0.9 defined to correspond specifics of the DST tree.

The results of lifting of Cluster L are shown in Figure 4. There are three head subjects: Machine
Learning, Machine Learning Theory, and Learning to Rank. These represent the structure of the
general concept “Learning” according to the text collection under consideration. The list of gaps
obtained is less instructive, reflecting probably a relatively modest coverage of the domain by the
publications in the collection (see in Table 2).
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Table 1. Clusters L, R, C: topics with largest membership values.

Cluster L Cluster R Cluster C

u(t) Code Topic u(t) Code Topic u(t) Code Topic

0.300 5.2.3.8. rule learning 0.211 3.4.2.1. query representation 0.327 3.2.1.4.7 biclustering
0.282 5.2.2.1. batch learning 0.207 5.1.3.2.1. image 0.286 3.2.1.4.3 fuzzy clustering
0.276 5.2.1.1.2. learning to rank representations 0.248 3.2.1.4.2 consensus clustering
0.217 1.1.1.11. query learning 0.194 5.1.3.2.2. shape 0.220 3.2.1.4.6 conceptual clustering
0.216 5.2.1.3.3. apprenticeship representations 0.192 5.2.4.3.1 spectral

learning 0.194 5.2.3.6.2.1 tensor clustering
0.213 1.1.1.10. models of representation 0.187 3.2.1.4.1 massive data

of learning 0.191 5.2.3.3.3.2 fuzzy representation clustering
0.203 5.2.1.3.5. adversarial 0.187 3.1.1.5.3. data provenance 0.159 3.2.1.7.3 graph based

learning 0.173 2.1.1.5. equational models conceptual clustering

root

learning
to

rank

theory
of

computation

machine learning theory

8

4

machine learning

9machine
learning

approaches

7

3

learning settings

6

learning paradigms

5

21

Topic with support 0<u<=0.2

Topic with support 0.2<u<=0.4 

Topic with support u>0.4

Topic with no support (u=0)

Gap

Head subject

Fig. 4. Lifting results for Cluster L: Learning. Gaps are numbered, see Table 2.

Similar comments can be made with respect to results of lifting of Cluster R: Retrieval. The
obtained head subjects: Information Systems and Computer Vision show the structure of “Re-
trieval” in the set of publications under considerations. For the results of lifting of Cluster C the
corresponding taxonomy fragment is too large, whereas the lifting results are too fragmentary. 16
(!) head subjects was obtained: clustering, graph based conceptual clustering, trajectory clustering,
clustering and classification, unsupervised learning and clustering, spectral methods, document fil-
tering, language models, music retrieval, collaborative search, database views, stream management,
database recovery, mapreduce languages, logic and databases, language resources. As one can see,
the core clustering subjects are supplemented by methods and environments in the cluster – this
shows that the ever increasing role of clustering activities perhaps should be better reflected in the
taxonomy.
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Table 2. Gaps at the lifting of Cluster L.

Number Topics

1 ranking, supervised learning by classification, structured outputs
2 sequential decision making in practice, inverse reinforcement learning in practice
3 statistical relational learning
4 sequential decision making, inverse reinforcement learning
5 unsupervised learning
6 learning from demonstrations, kernel approach
7 classification and regression trees, kernel methods, neural networks, learning in probabilistic

graphical models, learning linear models, factorization methods, markov decision processes,
stochastic games, learning latent representations, multiresolution, support vector machines

8 sample complexity and generalization bounds, boolean function learning, kernel methods,
boosting, bayesian analysis, inductive inference, structured prediction, markov decision processes,
regret bounds

9 machine learning algorithms

3.6 Making conclusions

We can see that the topic clusters found with the text collection do highlight areas of soon-to-
be developments. Three clusters under consideration closely relate, in respect, to the following
processes:

– theoretical and methodical research in learning, as well as merging the subject of learning to
rank within the mainstream;

– representation of various types of data for information retrieval, and merging that with visual
data and their semantics; and

– various types of clustering in different branches of the taxonomy related to various applications
and instruments.

In particular, one can see from the “Learning” head subjects (see Figure 4 and comments to it)
that main work here still concentrates on theory and method rather than applications. A good news
is that the field of learning, formerly focused mostly on tasks of learning subsets and partitions, is
expanding currently towards learning of ranks and rankings. Of course, there remain many sub-areas
to be covered: these can be seen in and around the list of gaps in Table 2.

Moving to the lifting results for the information retrieval cluster R, we can clearly see the
tendencies of the contemporary stage of the process. Rather than relating the term “information”
to texts only, as it was in the previous stages of the process of digitalization, visuals are becoming
parts of the concept of information. There is a catch, however. Unlike the multilevel granularity
of meanings in texts, developed during millennia of the process of communication via languages in
the humankind, there is no comparable hierarchy of meanings for images. One may only guess that
the elements of the R cluster related to segmentation of images and videos, as well as those related
to data management systems, are those that are going to be put in the base of a future multilevel
system of meanings for images and videos. This is a direction for future developments.

Regarding the “clustering” cluster C with its 16 (!) head subjects, one may conclude that,
perhaps, a time moment has come or is to come real soon, when the subject of clustering must be
raised to a higher level in the taxonomy to embrace all these “heads”. At the beginning of the Data
Science era, a few decades ago, clustering was usually considered a more-or-less auxiliary part of
machine learning, the unsupervised learning. Perhaps, soon we are going to see a new taxonomy of
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Data Science, in which clustering is not just an auxiliary instrument but rather a model of empirical
classification, a big part of the knowledge engineering. When discussing the role of classification as
a knowledge engineering phenomenon, one encounters three conventional aspects of classification:

– structuring the phenomena;
– relating different aspects of phenomena to each other;
– shaping and keeping knowledge of phenomena.

Each of them can make a separate direction of research in knowledge engineering.
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